

1A线性锂离子电池充电器

概述

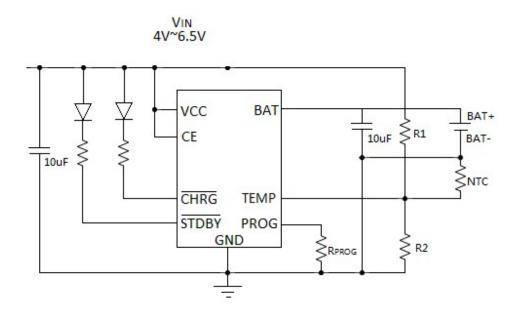
JST4056A是一款性能优异的单节锂离子电池恒流/恒压线性充电器。JST4056A采用ESOP8封装配合较少的外围原件使其非常适用于便携式产品,并且适合给USB电源以及适配器电源供电。

基于特殊的内部MOSFET架构以及防倒充电路,JST4056A不需要外接检测电阻和隔离二极管。当外部环境温度过高或者在大功率应用时,热反馈可以调节充电电流以降低芯片温度。充电电压固定在4.2V,而充电电流则可以通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值的1/10,芯片将终止充电循环。

当输入电压断开时,JST4056A进入睡眠状态,电池漏电流将降到1uA以下。JST4056A可以被设置于停机模式,此时芯片静态电流降至35uA。

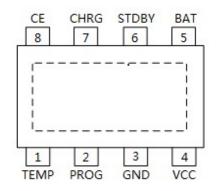
JST4056A还包括其他特性: 电池温度监测, 欠压锁定, 自动再充电和两个状态引脚以显示充电和充电终止。

特性


- ◆ 可编程充电电流1000mA
- ◆ 无需外接MOSFET, 检测电阻以及隔离二极管
- ◆ 用于单节锂电池、采用ESOP8封装的完整线性充电器
- ◆ 恒定电流/恒定电压操作,并具有可在无过热危险的情况下实现充电速率最大化的热调节功能。
- ◆ 精度达到±1%的4.2V预充电电压
- ◆ 用于电池电量检测的充电电流监控器输出
- ◆ 自动再充电
- ◆ 充电状态双输出、无电池和故障状态显示
- ◆ C/10充电终止
- ◆ 待机模式下的静态电流为35uA
- ◆ 2.9V涓流充电
- ◆ 电池温度监测
- ◆ 软启动限制浪涌电流
- ◆ BAT输入防反接保护
- ◆ 可 0V 激活
- ◆ 采用ESOP8封装

应用范围

- ◆ 移动电话、PDA
- ◆ MP3、MP4播放器
- ◆ 充电器
- ◆ 数码相机
- ◆ 电子词典
- ◆ 蓝牙、GPS导航仪
- ◆ 便携式设备



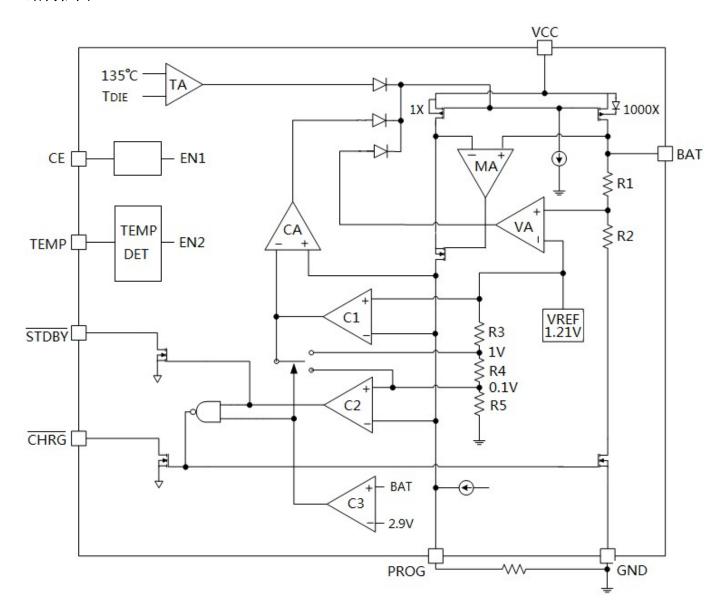
典型应用

管脚分布

ESOP8

管脚号	管脚名	描述
1	TEMP	电池温度检测输入
2	PROG	可编程恒流充电电流设置端
3	GND	地端
4	VCC	电源端
5	BAT	电池端
6	STDBY	电池充电完成指示端
7	CHRG	电池充电指示端
8	CE	芯片使能输入端

最大额定值 (注)


参数	范围	单位
VCC端电压	-0.3 to 6.5	V
PROG, BAT, CE, TEMP端电压	-0.3 to 6.5	V
CHRG端电压	-0.3 to 8	V
STDBY端电压	-0.3 to 8	V
BAT端电流	1	А
PROG端电流	2	mA
最大功耗	1500	mW
工作环境温度	-40 ~ 85	°C
最低/最高存储温度Tstg	-65 to 125	°C

ESD与Latch-up等级

人体模型ESD级别	4000V
机器模型ESD级别	400 V
Latch-up 级别	400mA

结构框图

电气特性

(如果没有特殊说明,环境温度= 25℃,输入电压=5V)

符号	参数	测试条件	最小值	典型值.	最大值	单位
Vcc	输入电源电压		4.0		6.5	V
Icc		充电模式(RPROG=12K) ⁽¹⁾		240	500	uA
	 输入电源电流	待机模式 (充电终止)		50	100	uA
	1111/ \ C 11/4\ C 1/11	停机模式(RPROG未连接, VCC <vbat,vcc<vuvlo)< td=""><td></td><td>35</td><td>70</td><td>uA</td></vbat,vcc<vuvlo)<>		35	70	uA
VFLOAT	输出浮充电压	0°C≤T≤85°	4.158	4.2	4.242	V
		恒流模式,R _{PROG} =2.4K	465	500	535	mA
		恒流模式,R _{PROG} =1.2K	930	1000	1070	mA
IBAT	 BAT端充电电流	待机模式, VBAT=4.2V	0	-2.5	-6	uA
IDAI	DAT 细儿电电机	停机模式		1	2	uA
		电池反接模式, VBAT=-4V		0.7		mA
		睡眠模式,VCC=0V		0	1	uA
İtrikl	涓流充电电流	VBAT <vtrikl, rprog="2.4K</td"><td>40</td><td>50</td><td>60</td><td>mA</td></vtrikl,>	40	50	60	mA
HINK	特弧龙电电弧 	VBAT <vtrikl, rprog="1.2K</td"><td>80</td><td>100</td><td>120</td><td>mA</td></vtrikl,>	80	100	120	mA
VTRIKL	涓流充电门限电压	VBAT上升	2.8	2.9	3.0	V
VTRHYS	涓流充电迟滞电压	VBAT下降	60	80	100	mV
VUVLO	VCC欠压锁定电压	VCC上升	3.7	3.8	3.93	V
Vuvhys	VCC欠压锁定迟滞电压	VCC下降	150	200	300	mV
VMSD	手动关断阈值电压	VPROG上升	1.15	1.21	1.30	V
VIVIOD		VPROG下降	0.9	1.0	1.1	V
VASD	VCC -VBAT锁闭电压	VCC上升	70	100	140	mV
VAOD		VCC下降	5	30	50	mV
ITERM	C/10终止电流门限 ⁽²⁾	RPROG=1.2K	0.085	0.10	0.115	mA/mA
TILIXIVI		RPROG=2.4K	0.085	0.10	0.115	mA/mA
VPROG	PROG引脚电压	恒流模式,RPROG=1.2K	0.93	1.0	1.07	V
VCHRG	CHRG端输出低电平	ICHRG=5mA		0.35	0.6	V
VSTDBY	STDBY端输出低电平	ISTDBY=5mA		0.35	0.6	V
VTEMP_H	TEMP脚高端翻转电压			80	83	%VCC
VTEMP_L	TEMP脚低端翻转电压		42	45		%VCC
ΔV RECHG	再充电电池门限电压	VFLOAT-VRECHG		50	100	mV
trechg	再充电延时时间	VBAT由高到低	0.8	1.8	4	ms
t TERM	充电终止延时时间	IBAT降至I _{CHG} /10以下	0.63	1.4	3	ms
IPROG	PROG端上拉电流			2.0		uA

注释(1): 这时处于充电状态, ICC= IVCC- IBAT

(2): 这里 C/10终止电流门限指的是终止电流与恒流充电电流的比值

使用说明

JST4056A是一款专门为锂离子电池设计的线性充电器,利用芯片内部的功率MOSFET对电池进行恒流/恒压充电。充电电流可以由外部电阻编程决定,最大充电电流可以达到1000mA。JST4056A拥有两个漏极开路输出的状态指示输出端,充电状态指示端CHRG和电池充电完成指示输出端STDBY。芯片内部的功率管电路在芯片的结温超过135℃时自动降低充电电流,这个功能可以使用户最大限度利用芯片充电,不用担心芯片过热而损坏芯片或者外部元器件。

●工作原理

当输入电压大于UVLO检测阈值和芯片使能输入端CE接高电平时,JST4056A开始对电池充电。如果电池电压低于2.9V,充电器用小电流对电池进行预充电。当电池电压超过2.9V时,充电器采用恒流模式对电池充电,充电电流由PROG端和GND端之间的电阻决定。当电池电压接近4.2V时,充电电流逐渐减小,JST4056A进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束。

充电结束阈值是恒流充电电流的1/10。当电池电压降到再充电阈值以下时,自动开始新的充电周期。芯片内部的高精度的电压基准源,误差放大器和电阻分压网络确保BAT端调制电压的精度在1%以内,满足锂离子和锂聚合物电池的要求。当输入电压掉电或者输入电压低于电池电压时,充电器进入停机模式,电池端消耗的电流小于2uA,从而增加待机时间。

如果将使能输入端CE接低电平,充电器停止充电。

●充电终止

当充电电流在达到最终浮充电压之后降至设定值的1/10,充电循环被终止。该条件是通过采用一个内部滤波比较器对PROG端进行监控来检测的。当PROG端电压降至100mV以下的时间超过1.8ms时,充电终止,JST4056A进入待机模式,此时的输入电源电流降至约50uA。

充电时,BAT端上的瞬变负载会使PROG端电压在DC充电电流降至设定值的1/10之间短暂地降至100mV以下,比较器的1.8ms延时时间确保了这种性质的瞬变负载不会导致充电循环过早终止。一旦平均充电电流降至设定值的1/10以下, JST4056A集中式充电循环并停止通过BAT端提供任何电流。在这种状态下,BAT端上所有负载都必须由电池供电。

充电状态指示

JST4056A有两个漏极开路状态指示输出端CHRG和STDBY。当充电器处于充电状态时,CHRG被拉到低电平,在其他状态CHRG为高阻态;当电池充电结束后,STDBY被拉到低电平,在其他状态STDBY为高阻态。 当电池没有接到充电器时,CHRG闪烁表示没有安装电池。

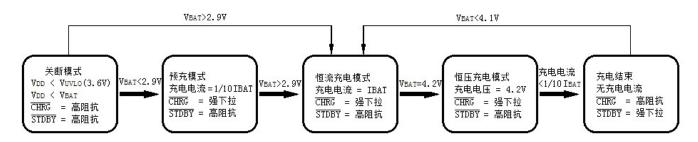
充电状态	CHRG	STDBY
正在充电	亮	灭
充电完成	灭	完
欠压,电池温度过高,过低 等故障状态,或无电池接入(TEMP使用)	灭	灭
BAT端连接1uF电容,无电池	闪烁(频率约20Hz	亮

●热限制

如果芯片温度升至135℃以上时,一个内部热反馈环路将减小设定的充电电流。该功能可防止JST4056A 过热,并允许用户提高给定电路板功率处理能力的上限而减小损坏JST4056A的风险。

电池温度检测

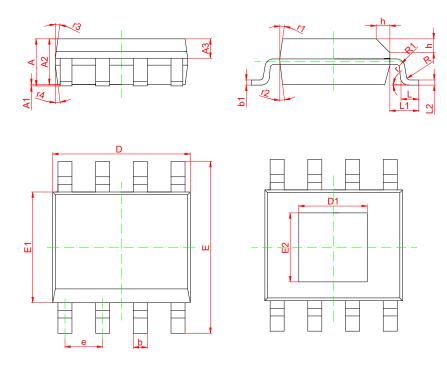
将TEMP脚接到电池的NTC传感器的输出端。如果TEMP管脚的电压小于输入电压的45%或者大于输入电压的80%,意味着电池温度过低或过高,则充电被暂停。


如果TEMP脚直接接GND、那么电池温度检测功能取消、其他充电功能正常。

●欠压锁闭

JST4056A拥有一个内部欠压锁定电路对输入电压进行监控,在VCC升至欠压锁定门限电压之前使芯片保持在停机工作模式。当VCC电压升高至3.8V之后,芯片退出UVLO,开始正常工作。VCC下降时的UVLO迟滞电压为200mV。

●自动充电循环


电池电压达到浮充电压,充电循环被终止之后,JST4056A立即对BAT端电压进行监控。当BAT端电压低于4.1V时,充电循环重新开始。确保了电池被维持在一个接近满电的状态,同时免除了进行周期性充电循环启动的需要。

一个典型充电循环的状态图

ESOP8 封装说明

SYMBOL	MIN	NOM	MAX	
Α	1.35	1.55	1.70	
A1	0	0.10	0.15	
A2	1.25	1.40	1.65	
A3	0.50	0.60	0.70	
b	0.38	-	0.51	
b1	0.37	0.42	0.47	
D	4.80	4.90	5.00	
D1	3.10	3.30	3.50	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
E2	2.20	2.40	2.60	
е	1.17	1.27	1.37	
L	0.45	0.60	0.80	
L1	1.04REF			
L2		0.25BSC		
R	0.07	-	=	
R1	0.07	-	-	
h	0.30	0.40	0.50	
r	0°	-	8°	
r1	15°	17°	19°	
r2	11°	13°	15°	
r3	15°	17°	19°	
r4	11°	13°	15°	